

BWRX-300: DELIVERING CARBON-FREE ELECTRICITY AT SCALE

Chris Maslak

August 19, 2025

GE Vernova – The Energy of Change

75K
Global employees

100+
Countries

~25%

Of the world's electricity today
is generated with GE Vernova
installed base

POWER

Gas Power, Hydro Power, Nuclear, Steam Power

WIND

LM Wind Power, Onshore Wind, Offshore Wind,

ELECTRIFICATION

Electrification Software, Grid Solutions,
Power Conversion, Solar & Storage Solutions,

ACCELERATORS

Advanced Research, Consulting Services,
Financial Services

WE ARE

GE VEROVA

POWER

Gas Power

- Heavy Duty Gas Turbines
- Aeroderivative Gas Turbines
- Steam Turbines/Generators

Steam Power

- US Nuclear, Global Coal
- Steam, Generators, Boilers

Hydro

- Hydro Turbines/Generators
- Pumped Storage

Nuclear

- Boiling Water Reactors
- Fuel
- Small Modular Reactors

WIND

Onshore Wind

- 2 - 3.5 MW platform
- 5 - 6 MW platform
- Services & repowering

Offshore Wind

- Haliade-150 (6 MW)
- Haliade-X (14 MW)

Wind Power

- ONW blades
- Haliade X blades

ELECTRIFICATION

Grid Solutions

- Transmission
- Transformers
- Grid Automation

Power Conversion & Storage

- O&G Electrification
- Naval Electrification
- Microgrids
- Inverters
- Energy Storage

DIGITAL

- Grid Software
 - Opus One Plat.
- Manufacturing
- Power and O&G

FINANCIAL SERVICES

- 3rd Party Financing Support
- Direct Financing through Equity

ACCELERATORS

Advanced Research

- Differentiated Technologies
- External Partnerships

Consulting Services

- Power Market Assessments
- Investment Decision Analysis

~75K EMPLOYEES IN 140 COUNTRIES

GE Vernova Hitachi: A Legacy of Turning Ideas into Reality

OVER 80 YEARS OF NUCLEAR EXPERIENCE AND INNOVATION

1939 First GE involvement in nuclear physics	1955 GE Atomic Division established	1957 Vallecitos BWR AEC License #1	1962 NPD achieves full power – 1st reactor in Canada	1974 25 th BWR Peach Bottom 3	1986 50 th BWR River Bend	1996 1 st Gen III reactor (ABWR) built on time on budget	2014 ESBWR U.S. NRC License	2017 BWRX-300 launched	2022 1 st commercial contract for BWRX-300 (OPG)	2023 TVA, OPG & SGE invest in BWRX-300 standard design	2024 UK FNEF award; GBN down select; OSGE starts licensing activities	2025 Darlington BWRX-300 Unit 1 approved for construction
--	---	--	--	--	--	---	---------------------------------------	----------------------------------	---	--	---	---

*Jointly developed technology with TerraPower

BWR – boiling water reactor
AEC – Atomic Energy Commission
GBN – Great British Nuclear

NPD – Nuclear Power Demonstration
ESBWR – economic simplified boiling water reactor
OSGE – Orlen Synthos Green Energy

NRC – Nuclear Regulatory Commission
TVA – Tennessee Valley Authority
FNEF – UK Future Enabling Fund

OPG – Ontario Power Generation
SGE – Synthos Green Energy

67 Reactors licensed in 10 Countries

Nuclear business overview

ADVANCED NUCLEAR

- Small Modular Reactor (BWRX-300)
- Sodium Fast Reactor (Working with TerraPower on Natrium™)

SERVICES

- Outage Services
- Inspections
- Plant & Reactor Mods
- Refurbishment Services
- Digital/Software Solutions
- Instrumentation & Controls
- Asset Enhancement Services
- Electrical/Mechanical Parts

FUELS

- Advanced BWR fuel
- Accident Tolerant Fuel
- Engineering Services
- Uranium Management

~2,500+ EMPLOYEES ... A FULL-SERVICE PROVIDER WITH GLOBAL PRESENCE

GVH Morris
Operation
Morris, IL

GVH SMR
Technologies
Canada
Toronto, ON

GENUSA Fuel
Factory
Salamanca, Spain

GVH Office
**Zurich,
Switzerland**

GVH Office
**Warsaw,
Poland**

BWR Training
Center
San Jose, CA

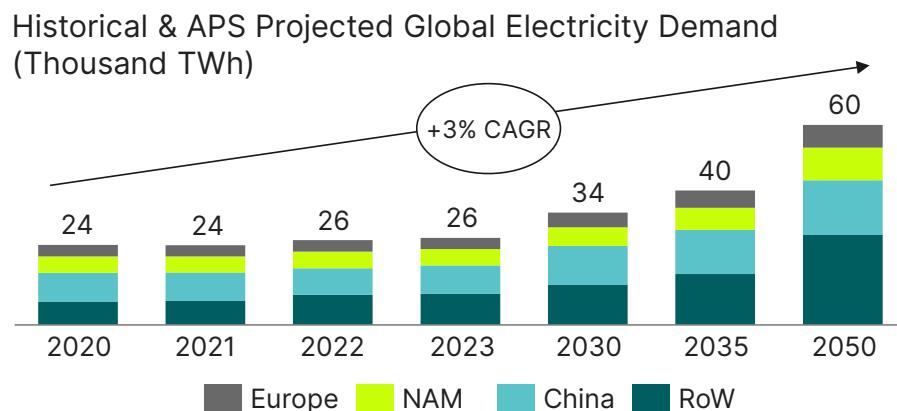
GVH and
GNF HQs
Wilmington, NC

GVH &
GENUSA Office
Madrid, Spain

GVH Office
London, UK

GVH Office
**Stockholm,
Sweden**

Hitachi, Rinkai Works
& GNF-J
Japan


TABLE OF CONTENTS

- 1** Why nuclear? Why SMRs?
- 2** Why is BWRX-300 the leader in SMR technology?
- 3** GVH is leading the delivery of SMRs globally
- 4** Illustration of BWRX-300 delivery from first interest to first power
- 5** GVH and partners will collaborate with you for successful delivery
- 6** GVH's global supply chain and licensing capability are built for repeatability

Global energy systems are at a tipping point

Global electricity demand is projected to more than double by 2050 vs. 2023 ...

Regional drivers of growth differ across the world:

New demand Data centers, EVs, & industrial electrification driving growth in NAM, EU, & China

Electrification Asia, Africa, and LATAM expanding electricity usage (e.g., HVAC) & increasing grid access

Notes: APS = Announced Pledges Scenario; LATAM = Latin America; NAM = North America; RoW = Rest of World

Source: IEA World Energy Outlook 2024; IEA Global Changes in Electricity Demand 2015-2024; NERC's 2023 Long-Term Reliability Assessment

©2025 GE Vernova Hitachi Nuclear Energy Americas LLC, All rights reserved.

... requiring novel solutions for clean, firm generation that address emerging challenges

Emerging grid reliability concerns

- 8 of 21 North-American regions are at risk for supply gaps
- Growth in renewables requires firm baseload generation to manage reliability

Looming decarbonization timelines

- Net-zero targets create a need for 24/7 cleaner power into the early 2030s
- Staying on a 1.5 °C path means retiring, repowering or retrofitting ~2,900 baseload coal units worldwide by 2030

Energy security and independence requirements

- Europe's TTF gas benchmark spiked in August 2022, raising long-term concerns about external gas dependence

Nuclear solutions address these major challenges of the energy transition

Benefits of nuclear power

Grid Reliability	Baseload power with grid stability	Delivers steady-state power plus frequency control to stabilize renewable-heavy grids
	High capacity factor	>90% capacity factor, with flexible outage scheduling
	Flexible load-following	Capable of ramping up or down to complement variable renewables
Decarbonization	Industrial decarbonization	Provides both electricity and thermal energy for sectors like steel, cement, chemicals, desalination, and district heating
	24/7/365* firm, lower carbon electricity	Enables net-zero targets with always-on, dispatchable clean energy—unaffected by weather, time of day, or season
Energy Security	Minimal land use	Significantly higher power density than renewables; ideal for industrial zones and legacy fossil sites
	Long asset life	Lifespan of 60+ years offers decades of predictable, emissions-free generation

*Exclusive of outages

©2025 GE Vernova Hitachi Nuclear Energy Americas LLC, All rights reserved.

SMRs vs. large nuclear: The case for faster delivery

1

SMRs deploy 2–3x faster than large-scale nuclear

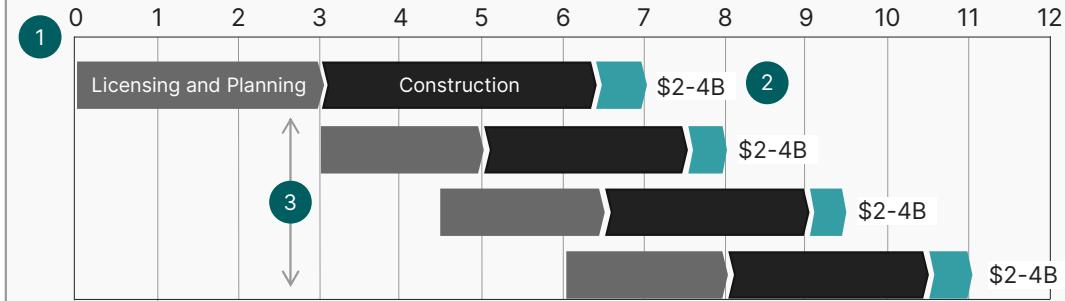
SMRs can reach commercial operation in 5–6 years **versus** 10–15 for traditional nuclear, accelerating energy security goals

2

Lower capital at risk unlocks financing flexibility

Follow-on unit costs \$2–4B vs. \$8–14B for large nuclear, reducing exposure and enabling phased, milestone-based investment and financing models

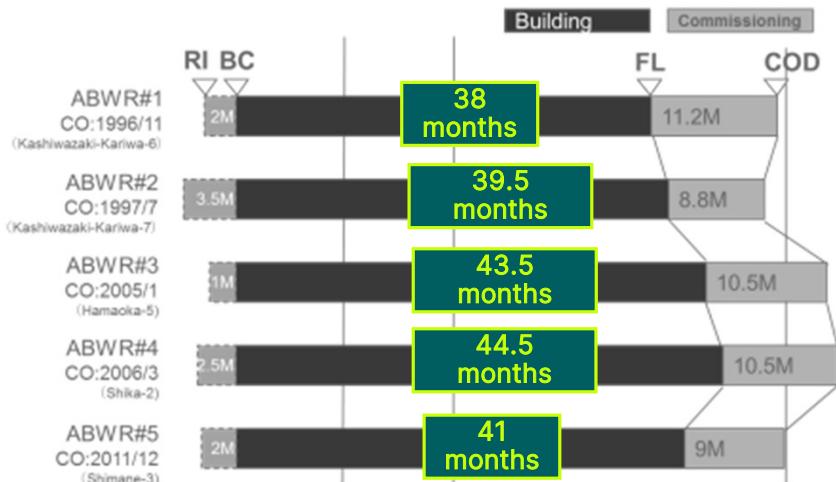
3


Modular build enables phased revenue & reinvestment

Staggered deployment allows **cash generation from early units** while others are built, **improving cost curves** and reducing pressure on financing

Large light water reactor project duration

Example SMR multi-unit project duration


Source: GVH internal analysis

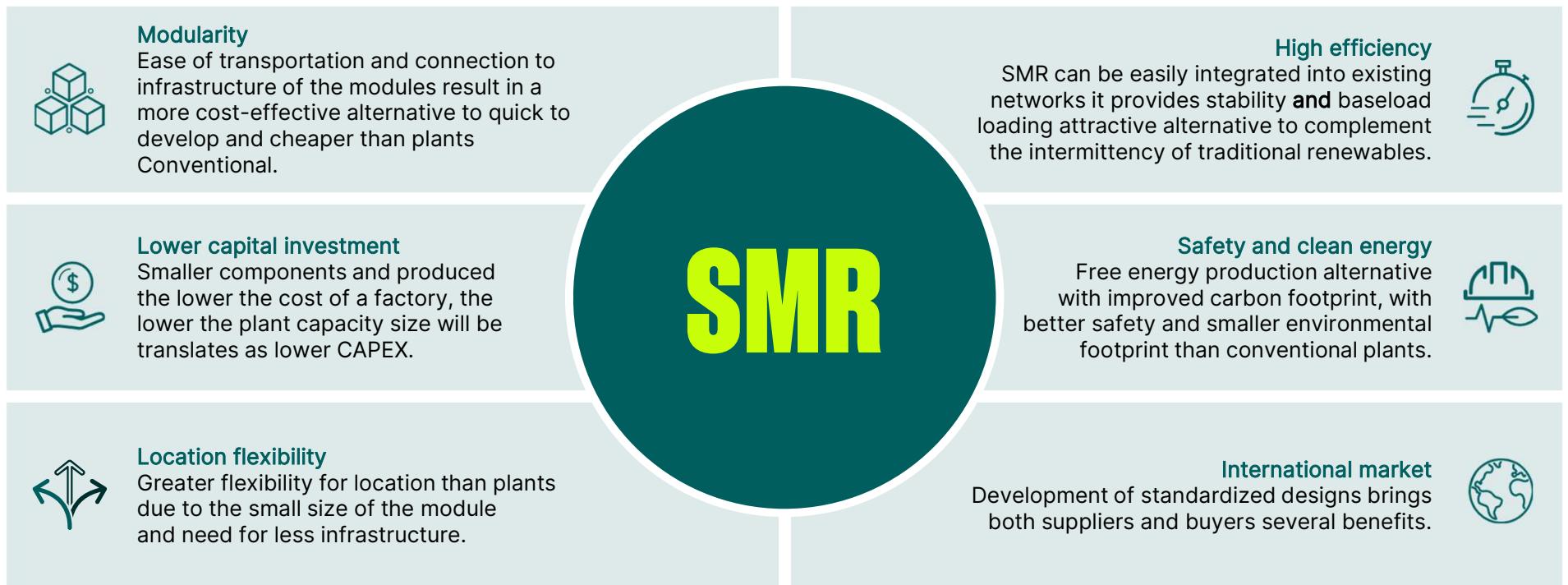
©2025 GE Vernova Hitachi Nuclear Energy Americas LLC, All rights reserved.

Building on ABWR experience

EFFICIENT, REPEATABLE MODEL

First-of-a-kind gen 3 plant built on 38-month construction schedule

SMRs vs. large nuclear: SMRs remove the barriers that held large nuclear back



	Financial risks	Construction delay	Political resistance	Project execution
Large Nuclear	Typically requires \$8 – 14B capital investment , creating significant financial exposure	Complex, site-built projects often take 8–12 years , exposing work to delays, rework, and uncontrollable field conditions	Past accidents and large emergency planning zones fuel public opposition and legal battles	Requires 8,000–12,000 skilled craft workers that are often in short supply
SMRs	Lower capital exposure & phased investment \$2–4B cost for follow-on units mitigates capital risk; staged projects enable earlier revenue generation	Prefabricated modules Factory fabrication shortens build cycle and improves quality	Small footprint & safe design Passive safety features, compact footprint, and lower carbon power helps build trust with regulators and communities	Offsite construction & standardization Off-site manufacturing reduces on-site labor to 1,000–1,600 and minimizes field variability

Source: GVH internal analysis

©2025 GE Vernova Hitachi Nuclear Energy Americas LLC, All rights reserved.

SMR with the advantages of both large-scale nuclear power and smaller-scale power projects

Source: IAEA

©2025 GE Vernova Hitachi Nuclear Energy Americas LLC, All rights reserved.

BWRX-300: A simpler, safer SMR based on proven technology

PROVEN

Decades-tested, licensed, fuel-ready nuclear platform

- Builds on 10th-generation BWR technology with 2,500+ reactor-years of operating experience
- Direct design lineage from ESBWR: licensed Gen III+ reactor with NRC-approved passive safety systems
- Uses GNF2 fuel—standardized, widely deployed, no HALEU required

SIMPLIFIED

Fully passive safety with no operator reliance

- 50% reduction in safety-related construction volume compared to competitors
- Off-the-shelf components and standardized design enable faster, lower-risk construction
- Compact power block and minimal land use reduce siting and grid complexity

INNOVATIVE

Smaller, faster, cheaper by intentional design

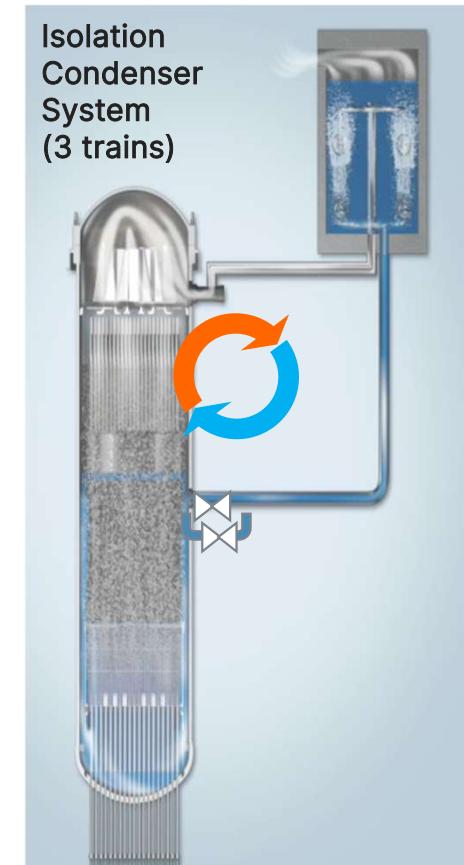
- Natural circulation cooling eliminates need for pumps, safety-related diesel gensets, or external power during accidents
- Passive Cooling System removes decay heat for 7 days with no operator action
- Integral isolation valves and simplified safety systems reduce failure modes and operator burden

**Cost-effective,
deployment-ready
SMR**

BWRX300

Innovative application of existing technology

Reactor Pressure Vessel with Integral Isolation Valves



Integral Isolation Valve

- Part of ASME code boundary for vessel
- Double isolation ... independent actuators
- Minimizes inventory loss for large breaks ... Loss of Coolant Accident (LOCA)
- Patented/NRC approved
- Integral isolation and cooling strategy by combining with passive safety (natural circulation) Isolation Condenser System (ICS)

Isolation Condenser System

- Defense-in-Depth with redundancy and diversity ... 3 x 100% trains
- Provides overpressure protection
- Removes decay heat while maintaining water inventory
- Passive safety with no operator action or power... coping time of more than 7 days
- Enables dramatic design simplification and elimination of unnecessary systems

BWRX-300 is a breakthrough innovation driving dramatic simplification and cost reduction

GE VERNONA
HITACHI

- Patented innovation drives simplicity
- Enables dramatic design simplification and elimination of unnecessary systems
- Leads to more than 50% reduction in construction materials per MW
- Game-changing cost reduction – competitive with other generation sources

Source: GVH internal analysis

©2025 GE Vernona Hitachi Nuclear Energy and/or its affiliates. All rights reserved.

From concept to construction: Customers are choosing BWRX-300 to solve their challenges

Wide Global Interest

“OPG is leveraging decades of nuclear energy and large project experience to deliver much-needed new, reliable electricity generation to Ontarians.”¹

Ken Hartwick,
OPG President and CEO

“TVA ... [is] creating a path for other utilities who choose to build the same technology.”²

Dan Moul,
TVA President and CEO

1. [OPG](#) 2. [World Nuclear News](#)

U.S. utilities team up to accelerate deployment of GE Vernova Hitachi's BWRX-300 small modular reactor

Led by **Tennessee Valley Authority (TVA)**, the coalition, which has submitted an application for \$800 million in funding from the U.S. Department of Energy's Generation III+ SMR program, includes

- Bechtel
- BWX Technologies (BWXT)
- Duke Energy
- Electric Power Research Institute (EPRI)
- GE Vernova Hitachi Nuclear Energy
- Indiana Michigan Power – an AEP company
- Oak Ridge Associated Universities
- Sargent & Lundy, Scot Forge
- Other utilities and advanced nuclear project developers and the State of Tennessee

→ **TENNESSEE VALLEY AUTHORITY LEADS** coalition applying for \$800 million U.S. Department of Energy SMR program grant

→ **DUKE ENERGY TO INVEST** in activities to advance the standard design and licensing of the GE Vernova BWRX-300

→ **AMERICAN ELECTRIC POWER SELECTS** BWRX-300 technology for potential deployment at power plant site in Indiana

Tier 1 application resubmitted April '25

Darlington New Nuclear Project: The first SMR project in the western world and a blueprint for success

Project overview:

- Canada's first grid-scale Small Modular Reactor (SMR) project, first of any G7 country
- Located at Ontario Power Generation's Darlington site
- A cornerstone of Ontario's clean energy expansion

History and milestones:

- 1980s: Original Darlington Nuclear Generating Station constructed
- 2020: OPG selects GE Hitachi BWRX-300 SMR technology
- 2024–2025: Construction begins on first unit
 - **May 2025: Final Investment Decision**
- 2030: Planned commercial operation
- Sustainable Innovation with GE Vernova

GE Vernova is enabling the future of global energy—scalable, clean, and dependable nuclear power that adapts to the world's growing energy needs.

OPG Darlington New Nuclear Plant Construction

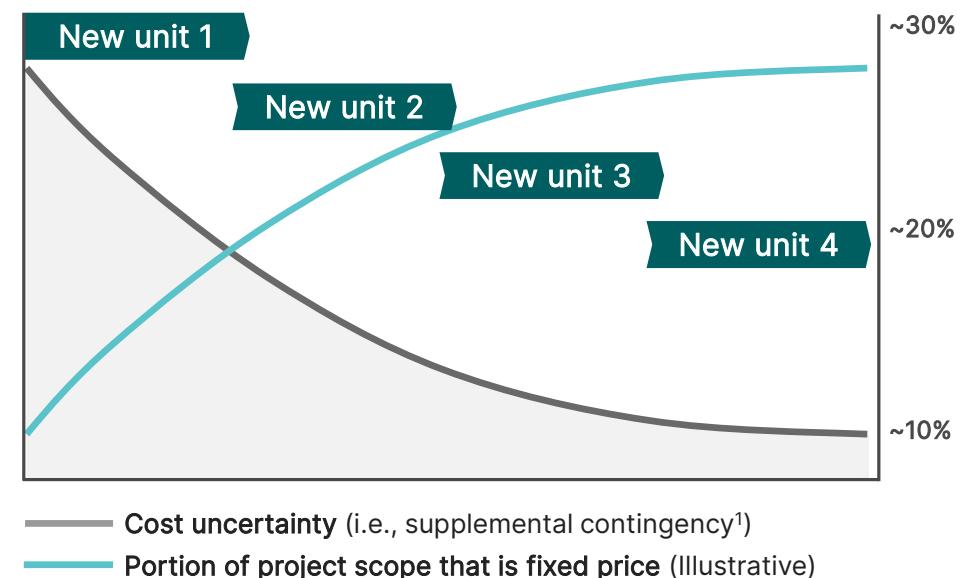
Momentum around the world: Global interest in BWRX-300 is growing

Countries with significant interest:

A blueprint for success: GE Vernova-Hitachi's leading experience de-risks your deployment

GVH is de-risking every new unit and every new project by ...

Selectively improving the BWRX-300 standard design while not affecting licensing


Building a qualified global supply chain

Standardizing licensing and leveraging 10 generations of BWR licensing experience

Deepening EPC partnerships to maximize and share construction learnings

Your BWRX-300 deployment will benefit from a repeatable standard design

With product/site learnings post-FOAK, uncertainty decreases and potential for price firming increases

1. Illustrative supplemental contingency as a measure of cost uncertainty throughout the project lifecycle

©2025 GE Vernova Hitachi Nuclear Energy Americas LLC, All rights reserved.

Five key phases define the end-to-end BWRX-300 project lifecycle

Pre-development > Development > Pre-construction > Construction > Operation

Align stakeholders, secure development financing, and select contractors/technology to begin project development

Advance design and regulatory/licensing effort to position for Construction Permit Application; begin long-lead item procurement

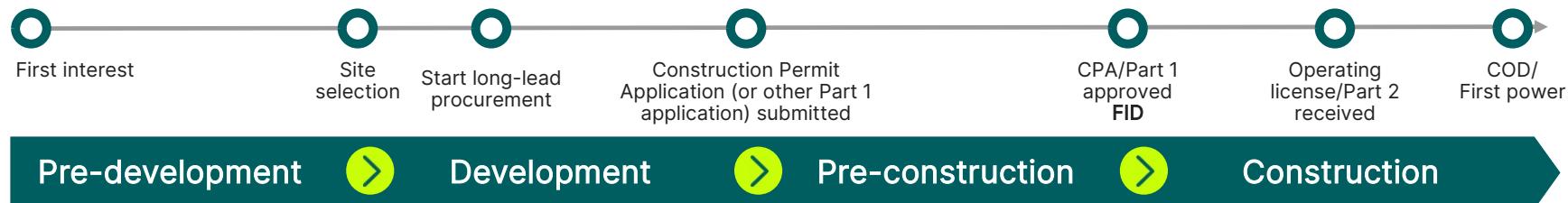
Finalize design and regulatory filings to position for Final Investment Decision; site preparation and construction readiness

Execution of construction activities, quality assurance, and licensing support culminating in mechanical completion, fuel loading, and operational testing to achieve first power

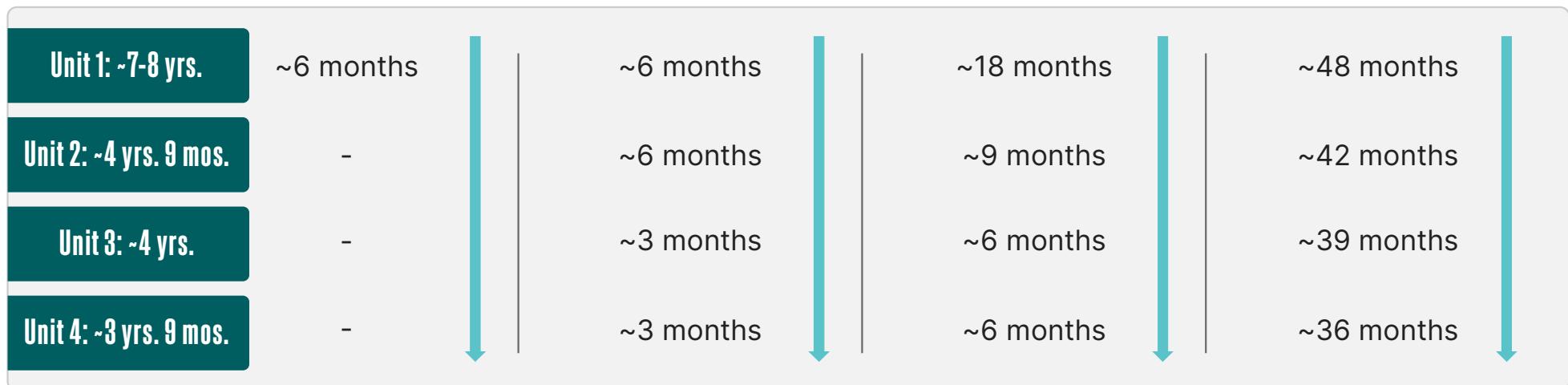
Commercial plant operation, maintenance and servicing, performance management and optimization, refueling

KEY TOPICS TO FOLLOW ...

From first interest to first power and beyond:
Key project milestones and activities


From first interest to first power and beyond:
Illustrating roles throughout the project

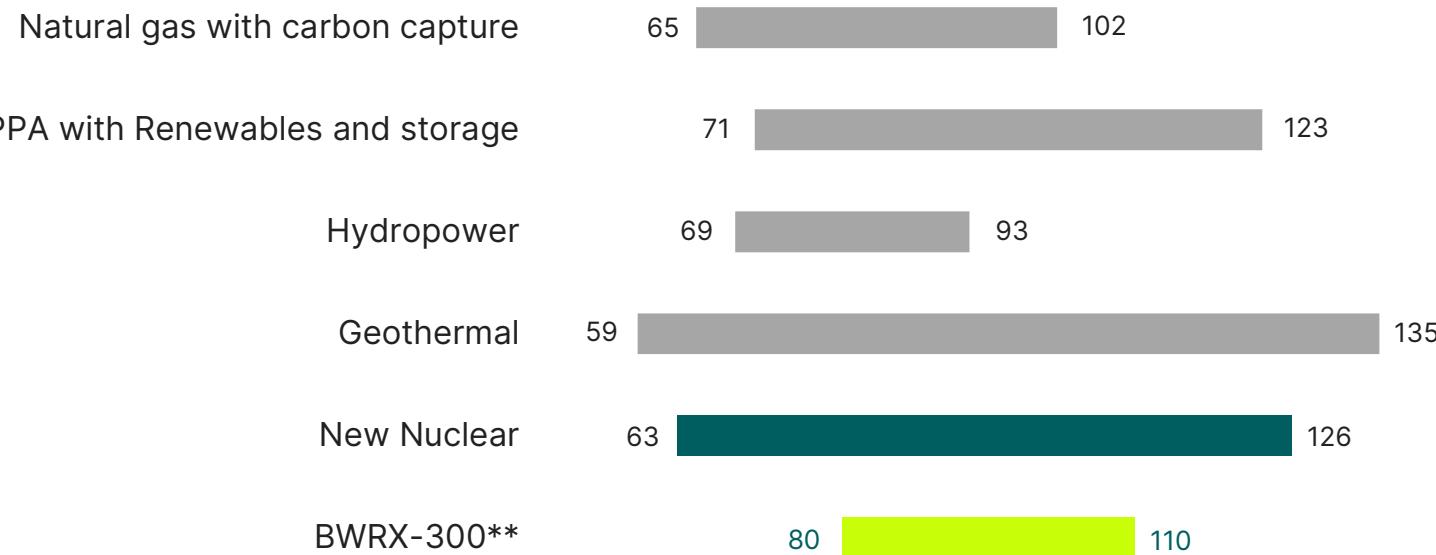
FID lookahead: GVH is your partner in defining the building blocks of the FID business case


INITIAL STEPS:
Kickstarting pre-development

Schedule: A realistic and repeatable delivery schedule*

Site A: ~7-8 yr. schedule estimate for Unit 1 will improve to under 4 years by Unit 4

Note: Units are not deployed in parallel, sequencing overview to follow



GE Vernova-Hitachi and partners are actively evaluating accelerated schedule options

Cost: Clear and comparable project LCOE*

On a levelized basis, BWRX-300 is directly competitive with other sources of firm lower carbon power

Sources: US DOE, Pathways to Commercial Liftoff: Advanced Nuclear, September 2024, GVH analysis

* Ranges are generally "early of a kind," meaning between FOAK and NOAK

** High-end represents first unit of U.S. multi-unit reference project, Low-end represents 5th unit of U.S. multi-unit reference project.

Normalized to DOE assumptions for New Nuclear – 80% debt financing @5%, 30% ITC, 5-year MACRS applied.

Contracting: Flexible contracting models can share and manage risk

	Recommended for early deployments		
SMR-specific considerations	Integrated Project Delivery (IPD)	EPC(M) ¹ COST-REIMBURSABLE	EPC(M) ¹ FIXED-PRICE
Risk and reward sharing			
Suitability for BWRX-300	More suitable for early deployments (inc. FOAK)		More suitable for later deployments (e.g., later units, multi-site)

Supporting financing with investing and structuring expertise

Hybrid equity from more investors	Loans and guarantees (e.g., DOE LPO)	Tax equity funding	Specialized asset financing arrangements	Transferring select project assets
<ul style="list-style-type: none">• Round out capital stack and develop a cost overrun strategy as further project details become available	<ul style="list-style-type: none">• Secure government loan and/or loan guarantees• Owners' consortium for overrun insurance	<ul style="list-style-type: none">• Serve to create a maximally capital efficient structure for the project and materially reduce overall financing costs	<ul style="list-style-type: none">• Apply to long-lead components to smooth out capital requirements during the early stages	<ul style="list-style-type: none">• Take advantage of rate-based funding where available

GE Vernova-Hitachi Financial Services is a global leader in financing solutions

At-a-glance

A **market leader** in energy project finance

Leading US **tax equity** investor

Deep access to the global **capital markets**

Customized deal structuring

Backed by GVH's strong **industrial brand**

By the numbers

45+

years of
experience

\$20B+

in renewable energy
investments

\$4B+

in capital
raised annually

\$50B+

in capital
deployed

50+GW

of thermal
power enabled

\$24B+

ECA capital raised
between 2015-22

BWRX-300 sourcing & supply chain strategy follows three principles to enable cost and schedule certainty

Standardized

BWRX-300 standard design allows for a de-risked supply chain that benefits from learnings

Cost-competitive

Leverage modularization and a global network of suppliers to enable cost efficiencies

Scalable

Grow confidence of suppliers' capabilities to reliably deliver growing number of units per year

COST AND SCHEDULE
CERTAINTY

Efficiently and reliably deliver multiple BWRX-300s with cost and schedule certainty

GE Vernova-Hitachi supply chain for construction is built on collaboration with top-tier partners around the world

STANDARDIZED ENGINEERING AND PROCUREMENT

Equipment partners with capability and capacity

HITACHI

BWX Technologies, Inc.

VELAN

AE and engineering partners

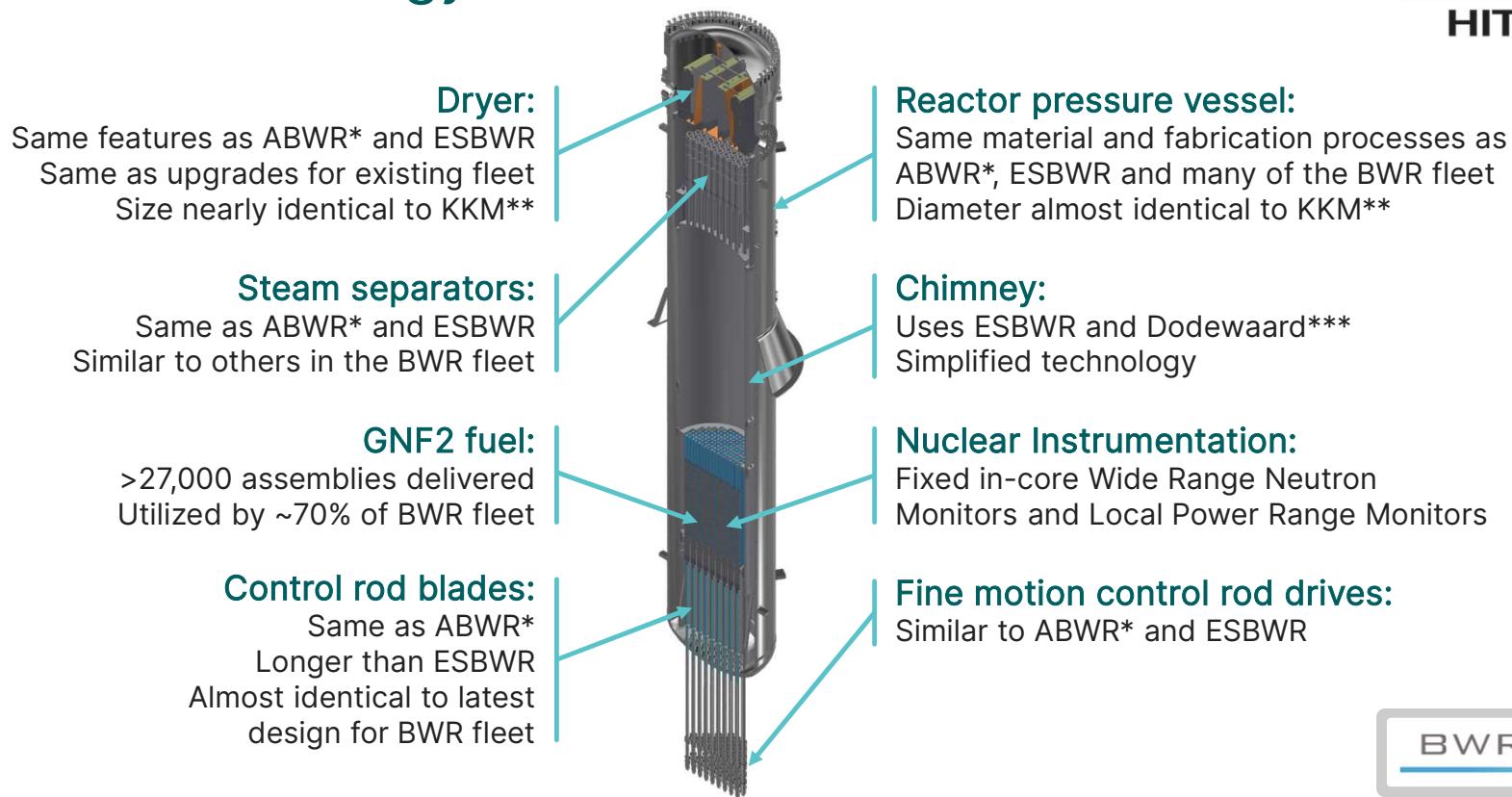
BLACK & VEATCH

AtkinsRéalis

SCALABLE CONSTRUCTION

Constructors with scale to deliver

AECOM


FLUOR®

SAMSUNG C&T

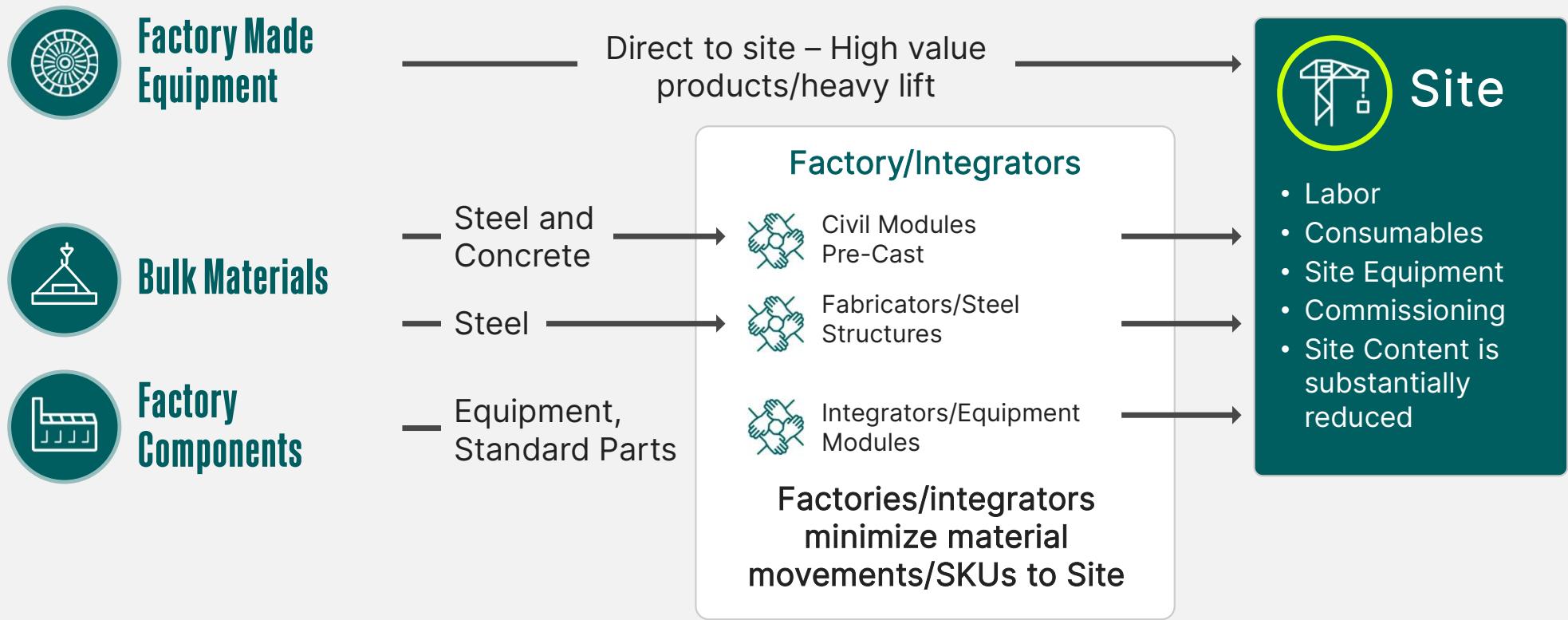
Using proven technology

*ABWR fleet has combined 22+ years of operating experience | **Kernkraftwerk Mühleberg (KKM): 355 MWe BWR/4 1972 – 2019 | ***Dodewaard: 58MWe natural circulation BWR, 1969 ~ 1997

BWRX300

Proven components, prior testing, and operational history greatly accelerate deployment

Supply chain for major components is global and proven via OPG DNNP


Major component	Key suppliers chosen for OPG DNNP-1	Future global supply chain
Reactor Pressure Vessel	BWXT	
Fine Motion Control Rod Drive	HGNE	
Hydraulic Control Unit	HNGE	
Large Reactor Internals	HGNE	
Integral Isolation Valve	Velan	
Isolation Condenser System	Chemetics	
Steam Turbine & Generator	EDF Group	

Additional detail:

- GNF2 Fuel, Safety Controls and Control Rod Blades manufactured in-house by GVH (Wilmington NC)
- GVH has fuel capabilities in EU, USA, and Japan to serve a global footprint

**GLOBAL BWRX-300
SUPPLY CHAIN**
will be scaled from the
foundation developed
for Darlington

Detail: Modularization focuses on movement of high-value goods to site instead of materials

BWRX-300 licensing approach is in practice globally

North America

United States (US)

Tennessee Valley Authority (TVA)

- Planning and preliminary licensing underway for potential deployment of a BWRX-300 at the Clinch River Site near Oak Ridge, Tennessee
- PSAR¹ /CPA² has been submitted to USNRC³ in May 2025 (accelerated from June 2025)

Canada

Ontario Power Generation (OPG)

- Early site preparation completed for deployment of the first BWRX-300 small modular reactor at OPG's Darlington site. Three additional units planned
- PSAR/LTC⁴ Approved by CNSC
- POSAR/LTO⁵ is under development

SaskPower

- Entered an agreement with GVH to collaborate on project planning and to share expertise for the BWRX-300.
- PSAR under development by GVH. (SaskPower Lead)

Europe

Poland

- Orlen Synthos Green Energy (OSGE) worked with government of Poland to approve six locations for construction of 24 BWRX-300 SMRs
- Generic PSAR is under development

United Kingdom (UK)

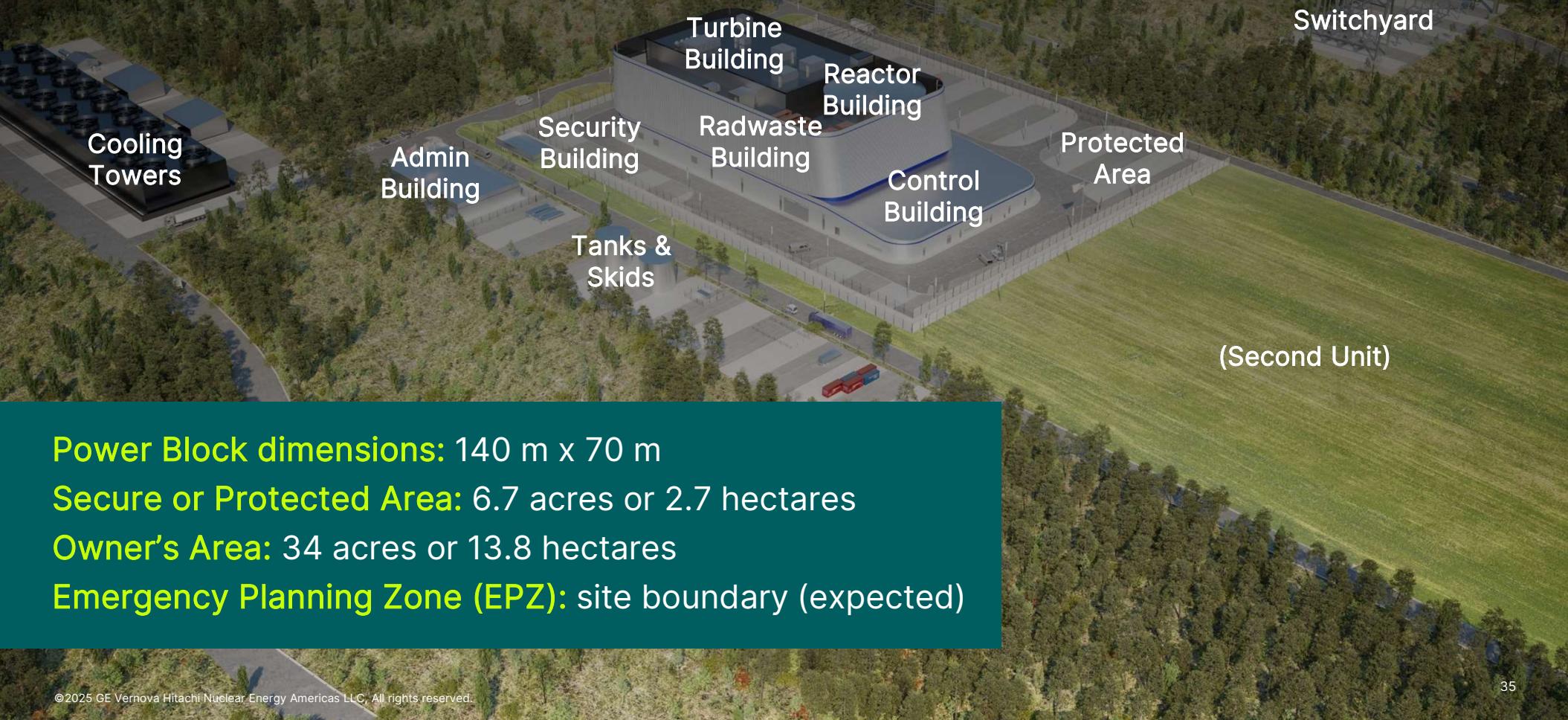
- Generic Design Assessment (GDA) under Office of Nuclear Regulations (ONR) review – anticipated completion 2025

Sweden/Finland

- Vattenfall down selected GVH as one of two candidates for SMR selection

Note: Pre-licensing activities (without a site) are typically led by OEM, site-specific licensing activities are led by customers / 1. Preliminary Safety Analysis Report; 2. Construction Permit Application; 3.US Nuclear Regulatory Commission; 4. License to Construct; 5. Pre-Operational Safety Analysis Report/License to Operate

US licensing: BWRX-300 licensing path is more flexible and streamlined than others' Part 52 approach




As used by BWRX-300

Key Factor	Part 52 Approach	Part 50 Approach
Upfront approval gives investment credibility for new reactor designs	Yes	No
Design approval can de-risk lack of regulatory familiarity (e.g., for non-US designs)	Yes	No
Construction can start before final operating license is received	No	Yes
Operating license application reflects as-built plant	No	Yes
Site can be licensed before design is finalized	No	Yes
Suited for integrating product design learnings	No	Yes
Project execution can be de-risked in phases	No	Yes

Representative site layout

GE VERNONA
HITACHI

GE VERNIOVA HITACHI